ื˜ื•ืจื™ื ืฉืœ ืคื•ื ืงืฆื™ื•ืช

ื”ื’ื“ืจื” โˆ‘n=1โˆžfn ื ืงืจืืช ื˜ื•ืจ ืฉืœ ืคื•ื ืงืฆื™ื•ืช. ื›ืžื• ื›ืŸ, Sn(x)=โˆ‘k=1nfk(x) ื ืงืจืืช ืกื“ืจื” ื”ืกื›ื•ืžื™ื ื”ื—ืœืงื™ื™ื.

ื ืืžืจ ืฉ ื˜ื•ืจ ื”ืคื•ื ืงืฆื™ื•ืช ืžืชื›ื ืก ื ืงื•ื“ืชื™ืช/ ื‘ืžืดืฉ ืื ืกื“ืจืช ื”ืกื›ื•ืžื™ื ื”ื—ืœืงื™ื™ื ืฉืœื” ืžืชื›ื ืกืช ื ืงื•ื“ืชื™ืช / ื‘ืžืดืฉ. ื•ื”ืคื•ื ืงืฆื™ื™ื” ื”ื’ื‘ื•ืœื™ืช ืฉืœ ืฉื ื™ื”ื ืชื”ื™ื” ืฉื•ื•ื”. ื›ืžื• ื›ืŸ, ืชื—ื•ื ื”ื”ืชื›ื ืกื•ืช ืฉืœ ืฉื ื™ื”ื ื™ื”ื™ื” ืื•ืชื• ืชื—ื•ื ื”ืชื›ื ืกื•ืช.
(ื”ืคื•ื ืงืฆื™ื™ื” ื”ื’ื‘ื•ืœื™ืช ืžืกื•ืžื ืช ื›ื˜ื•ืจ ืขืฆืžื•).

ืžืฆื™ืืช ืชื—ื•ื ื”ืชื›ื ืกื•ืช ืฉืœ ื˜ื•ืจ ืคื•ื ืงืฆื™ื•ืช

ืžืชื™ื™ื—ืกื™ื ืœ x ื›ืงื‘ื•ืข, ื•ื ืงื‘ืœ ื˜ื•ืจ ืžืกืคืจื™ื , ื›ืขืช ื ื•ื›ืœ ืœื”ืฉืชืžืฉ ื‘ื›ืœื™ื ืฉืื ื—ื ื• ืžื›ื™ืจื™ื ืžืื™ื ืคื™ 1 ืœืžืฉืœ:

โˆ‘n=1โˆžx3n=x3โ‹…โˆ‘n=1โˆž1n

ืื ื—ื ื• ื™ื•ื“ืขื™ื ืžืื™ื ืคื™ 1 ืฉื–ื” ื˜ื•ืจ ืžืชื‘ื“ืจ ื•ืœื›ืŸ ืœื›ืœ x ื”ื˜ื•ืจ ื™ืชื‘ื“ืจ..

ื”ืชื›ื ืกื•ืช ื‘ืžืดืฉ ืฉืœ ื˜ื•ืจื™ ืคื•ื ืงืฆื™ื•ืช

ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื›ืœ ื˜ื•ืจ ืคื•ื ืงืฆื™ื•ืช ื”ื•ื ืžืงืจื” ืคืจื˜ื™ ืฉืœ ืกื“ืจื” ื•ืœื›ืŸ ืฉื™ื˜ื•ืช ื”ื‘ื“ื™ืงื” ื–ื”ื•ืช..

ืžื‘ื—ืŸ ื” M ืฉืœ ื•ื•ื™ืจืฉื˜ืจืืก

ืื ืœื›ืœ nโˆˆN ื•ืœื›ืœ x ื”ืฉื™ื™ืš ืœืงื˜ืข ืฉื‘ื• ืžื•ื’ื“ืจื•ืช ื˜ื•ืจ ื”ืคื•ื ืงืฆื™ื•ืช ืžืชืงื™ื™ื :

|fn(x)|โ‰คan

ื•ื’ื โˆ‘n=1โˆžan ืžืชื›ื ืก, ืื–ื™: โˆ‘n=1โˆžfn(x) ืžืชื›ื ืก ื‘ืžืดืฉ.

ื’ื‘ื•ืœื•ืช ื‘ืžืดืฉื ืฉืœ ื˜ื•ืจื™ ืคื•ื ืงืฆื™ื•ืช

  1. ืื ื›ืœ fn ืจืฆื™ืคื” ื‘ I ื•ืื ื™ืฉ ื”ืชื›ื ืกื•ืช ื‘ืžืดืฉ ื‘I ืื–ื™, ื”ืคื•ื ืงืฆื™ื™ื” ื”ื’ื‘ื•ืœื™ืช โˆ‘fn ืจืฆื™ืคื” ื‘ I.
  2. ืื fn ืื™ื ื˜ื’ืจื‘ื™ืœื™ืช ืœื›ืœ n ื‘ [a,b] ื•ืื ื”ื˜ื•ืจ ืžืชื›ื ืก ื‘ืžืดืฉื ื‘ืงื˜ืข ื–ื” ืื– ื’ื ื”ืคื•ื ืงืฆื™ื™ื” ื”ื’ื‘ื•ืœื™ืช โˆ‘fn ืื™ื ื˜ื’ืจื‘ื™ืœื™ืช ื‘ืงื˜ืข ื•ืืคืฉืจ ืœื‘ืฆืข ืื™ื ื˜ื’ืจืฆื™ื™ื” ืื™ื‘ืจ ืื™ื‘ืจ ื›ืœื•ืžืจ The Integral ืฉืœ ื”ืกื›ื•ื ืฉื•ื•ื” ืœืกื›ื•ื ืฉืœ ื”ืื™ื ื˜ื’ืจืœ.
โˆซabโˆ‘n=1โˆžfn=โˆ‘n=1โˆžโˆซabfn
  1. ืื โˆ‘fn ืžืชื›ื ืก ื‘ I (ืœื ื—ื™ื™ื‘ ื‘ื›ืœ ื”ืงื˜ืข) ื•ื˜ื•ืจ ื”ื ื’ื–ืจื•ืช โˆ‘fnโ€ฒ ืžืชื›ื ืก ื‘ืžืดืฉ ื‘ I . ืื– ื’ื ื”ืคื•ื ืงืฆื™ื™ื” ื”ื’ื‘ื•ืœื™ืช โˆ‘fn ืžืชื›ื ืก ื‘ืžืดืฉื ื‘ I ื•ื™ืชืจื” ืžื›ืš ื”ื™ื ื’ื–ื™ืจื” ื•ื ื™ืชืŸ ืœื’ื–ื•ืจ ืื™ื‘ืจ ืื™ื‘ืจ ื›ืœื•ืžืจ
(โˆ‘fn)โ€ฒ=โˆ‘(fn)โ€ฒ

ืžืฉืคื˜

โˆ€|q|<1:โˆ‘n=0โˆžqn=11โˆ’qโˆ€|q|<1:โˆ‘n=1โˆžqn=โˆ‘n=0โˆžqnโˆ’1=11โˆ’qโˆ’1=q1โˆ’q
ืื ืงื“ื•ื˜ื”- ืคื•ื ืงืฆื™ื” ืจืฆื™ืคื” ืฉืื™ื ื” ื’ื–ื™ืจื” ื‘ืืฃ ื ืงื•ื“ื”

ืคื•ื ืงืฆื™ื™ืช ื•ื™ื™ืจืฉื˜ืจืืก :

w(x)=โˆ‘k=1โˆžcosโกฯ€bkxak

ื–ืืช ืคื•ื ืงืฆื™ื™ื” ืจืฆื™ืคื” ื‘ R ื•ืื™ื ื” ื’ื–ื™ืจื” ื‘ืืฃ ื ืงื•ื“ื”.

ื˜ื•ืจื™ ื—ื–ืงื•ืช

ื˜ื•ืจ ื—ื–ืงื•ืช ืกื‘ื™ื‘ a ื”ื•ื ื˜ื•ืจ ืคื•ื ืงืฆื™ื•ืช ืžื”ืฆื•ืจื” โˆ‘n=0โˆžan(xโˆ’a)n . ื”ื™ืชืจื•ืŸ ื‘ื˜ื•ืจื™ ื—ื–ืงื•ืช ื”ื•ื ืฉื ื™ืชืŸ ืœืžืฆื•ื ืืช ืชื—ื•ื ื”ื”ืชื›ื ืกื•ืช ืœืคื™ ื ื•ืกื—ื”..

ื”ื˜ื•ืจ ื—ื–ืงื•ืช ื”ื›ื™ ืงืœืืกื™ ืฉืื ื—ื ื• ื™ื•ื“ืขื™ื ืœื—ืฉื‘ ืื•ืชื• ืžืคื•ืจืฉื•ืช ื”ื•ื ื”ื˜ื•ืจ ื”ื”ื ื“ืกื™ .

ืžืฉืคื˜ ืจื“ื™ื•ืก ื”ื”ืชื›ื ืกื•ืช
ืงื™ื™ื ืžืกืคืจ Rโ‰ฅ0 ืื• R=โˆž ื›ืš ืฉื˜ื•ืจ ื—ื–ืงื•ืช ืžืชื›ื ืก ืœื›ืœ x ืฉืžืงื™ื™ื |xโˆ’a|<R ื•ืžืชื‘ื“ืจ ืื—ืจืช.. R ืžื™ื™ืฆื’ ืืช ืจื“ื™ื•ืก ื”ื”ืชื›ื ืกื•ืช, ื‘ืืžืฆืขื•ืชื• ื•ื‘ืืžืฆืขื•ืช ื”ืžืจื›ื– ืฉืœ ื”ื˜ื•ืจ ืืคืฉืจ ืœื“ืขืช ืืช ืชื—ื•ื ื”ื”ืชื›ื ืกื•ืช..
ืชื—ื•ื ื”ื”ืชื›ื ืกื•ืช ื™ื”ื™ื” ื‘ื•ื•ื“ืื•ืช (Rโˆ’a,R+a) . ืืช ื”ืงืฆื•ื•ืช ืฆืจื™ืš ืœื‘ื“ื•ืง ื™ื“ื ื™..

ืื™ืš ืžื—ืฉื‘ื™ื ืืช ื”ืจื“ื™ื•ืก? ื ื•ืกื—ืช ืงื•ืฉื™-ื”ื“ืžืจ

  1. R=1limnโ†’โˆž|an|n
  2. R=1limnโ†’โˆž|an+1an|

ื‘ืชื ืื™ ืฉื”ื’ื‘ื•ืœ ื‘ืžื›ื ื” ืงื™ื™ื ื‘ืžื•ื‘ืŸ ื”ืจื—ื‘ . ื›ืžื• ื›ืŸ ื ืฉื™ื ืœื‘ ืฉืื ื”ืžื›ื ืก ืฉื•ืืฃ ืœ 0 ืจื“ื™ื•ืก ื”ื”ืชื›ื ืกื•ืช ื”ื•ื ืื™ื ืกื•ืคื™ ื›ืœื•ืžืจ ื‘ื›ืœ ื”ืžืžืฉื™ื™ื, ื•ืื ืฉื•ืืฃ ืœ ืื™ื ืกื•ืฃ ืื– ื”ืจื“ื™ื•ืก ื”ื•ื 0. ื›ืžื• ื›ืŸ ื ืฉื™ื ืœื‘ ืฉืื ื”ื’ื‘ื•ืœ ืœื ืงื™ื™ื ื–ื” ืœื ืื•ืžืจ ืฉืื™ืŸ ืจื“ื™ื•ืก..

ื”ืชื›ื•ื ื•ืช ืฉืœ ื˜ื•ืจื™ ื—ื–ืงื•ืช

  1. ืื ืจื“ื™ื•ืก ื”ื”ืชื›ื ืกื•ืช ื”ื•ื R ืื– ื”ื˜ื•ืจ ื—ื–ืงื•ืช ืžืชื›ื ืก ื‘ื”ื—ืœื˜ ื‘ืชื—ื•ื ื”ื”ืชื›ื ืกื•ืช .
  2. ืžืฉืคื˜ ืื‘ืœ - ื”ื˜ื•ืจ ืžืชื›ื ืก ื‘ืžืดืฉ ื‘ื›ืœ ืงื˜ืข ืกื’ื•ืจ ืฉืžื•ื›ืœ ื‘ืชื—ื•ื ื”ื”ืชื›ื ืกื•ืช.
  3. ื”ืคื•ื ืงืฆื™ื™ื” ื”ืžืชืืจืช ืืช ื˜ื•ืจ ื”ื—ื–ืงื•ืช ื”ื™ื ืคื•ื ืงืฆื™ื™ื” ืจืฆื™ืคื” ื‘ืชื—ื•ื ื”ื”ืชื›ื ืกื•ืช.
  4. ืžื•ืชืจ ืœื‘ืฆืข ืื™ื ื˜ื’ืจืฆื™ื™ื” ื•ื’ื–ื™ืจื” ืื™ื‘ืจ ืื™ื‘ืจ ื‘ื›ืœ ื”ืงื˜ืข ื”ืคืชื•ื— ืฉืœ ืชื—ื•ื ื”ื”ืชื›ื ืกื•ืช.
    ื ืฉื™ื ืœื‘, ืจื“ื™ื•ืก ื”ื”ืชื›ื ืกื•ืช ืฉืœ ื”ืื™ื ื˜ื’ืจืœ ื•ื”ื ื’ื–ืจืช ื”ื•ื ืื•ืชื• ืจื“ื™ื•ืก, ืคืจื˜ ืœืงืฆื•ื•ืช (ืื ืจื“ื™ื•ืก ื”ื”ืชื›ื ืกื•ืช ื”ื•ื ืงื˜ืข ืคืชื•ื— ืื– ื–ื” ืœื ืžืฉื ื”, ืจืœื•ื•ื ื˜ื™ ืื ืจื“ื™ื•ืก ื”ื”ืชื›ื ืกื•ืช ื”ื•ื ืงื˜ืข ืกื’ื•ืจ), ื‘ืคืจื˜ ื‘ื’ื–ื™ืจื” ืจื“ื™ื•ืก ื”ื”ืชื›ื ืกื•ืช ื™ื›ื•ืœ ืจืง ืœืงื˜ื•ืŸ ื•ื‘ืื™ื ื˜ื’ืจืฆื™ื™ื” ื™ื›ื•ืœื™ื ืจืง ืœื’ื“ื•ืœ. (ืื—ืจื™ ื”ืฆื‘ื” ืžื—ืฉื‘ื™ื ืขื ื›ืœื™ื ืฉืœ ืื™ื ืคื™ 1 ืืช ื”ืชื›ื ืกื•ืช ืื• ื”ืชื‘ื“ืจื•ืช ื”ื˜ื•ืจ).

ืžืกืงื ื” ืžืžืฉืคื˜ ืื‘ืœ :
ืื ื™ืฉ ื˜ื•ืจ ื—ื–ืงื•ืช ืฉืื ื—ื ื• ื™ื•ื“ืขื™ื ืืช ื”ืกื›ื•ื ืฉืœื• ื‘ืงื˜ืข ืคืชื•ื—, ืื ื™ืฉ ื”ืชื›ื ืกื•ืช ื‘ืงืฆื•ื•ืช ืื– ื”ืกื›ื•ื ื”ื•ื ื ื›ื•ืŸ ื’ื ืœืงืฆื•ื•ืช ื”ืงื˜ืข. ื”ืกื™ื‘ื” ืœื›ืš ื”ื™ื ืฉืื ื™ืฉ ื”ืชื›ื ืกื•ืช ื‘ืงืฆื•ื•ืช ื‘ื˜ื•ืจ ื—ื–ืงื•ืช ืื– ื–ื” ื‘ืคืจื˜ ื”ืชื›ื ืกื•ืช ื‘ืžืดืฉ.
ื”ื”ื•ื›ื—ื” ื ื•ื‘ืขืช ืžืฉื™ื•ื•ื™ืŸ ืฉืœ ืคื•ื ืงืฆื™ื•ืช ืจืฆื™ืคื•ืช.. ืœื ืืคืจื˜ ืืช ื”ื”ื•ื›ื—ื” ื›ืืŸ.

ื˜ื•ืจื™ ื˜ื™ื™ืœื•ืจ ืžืงืœื•ืจืŸ

ืคื•ืœื™ื ื•ืžื™ื

ืคื•ืœื™ื ื•ื ื”ื•ื ืคื•ื ืงืฆื™ื” ืžื”ืฆื•ืจื” p(x)=โˆ‘k=0dakxk ื›ืฉak ื”ื ืžืกืคืจื™ื ืžืžืฉื™ื™ื ื›ืžื• ื›ืŸ ืื an ืฉื•ื ื” ืž0 ืื– d ืžื•ื’ื“ืจืช ื›ื“ืจื’ืช ื”ืคื•ืœื™ื ื•ื.

ื›ืœืœื™ ื”ื’ื–ื™ืจื” ืฉืœ ืคื•ืœื™ื ื•ื ืžืจืื™ื ืฉ

pโ€ฒ(x)=โˆ‘k=1dkakxkโˆ’1pโ€ฒโ€ฒ(x)=โˆ‘k=2dk(kโˆ’1)akxkโˆ’2

ื•ื‘ืื•ืคืŸ ื›ืœืœื™ ืœื›ืœ 0โ‰คnโ‰คd

p(n)(x)=โˆ‘k=ndk(kโˆ’1)(kโˆ’2)โ€ฆ(kโˆ’n+1)akxkโˆ’n

ื•ืื n>d ื ืงื‘ืœ ืืช ืคื•ืœื™ื ื•ื ื” 0 .

ืžืฉื”ื• ืžืขื ื™ื™ืŸ ืฉืืคืฉืจ ืœื”ืกื™ืง ืžื›ืœืœื™ ื”ื’ื–ื™ืจื” ื”ืืœื• ื”ื™ื ืฉืืคืฉืจ ืœื”ืฉื™ื’ ืืช ื”ืžืงื“ื ืฉืœ ื”ืคื•ืœื™ื ื•ื ื” n-ื™ ืขืœ ื™ื“ื™ ื”ืฆื‘ืช x=0 ื›ืœื•ืžืจ :

p^{(n)}(0)=n!\cdot a_{n}$$ (ื‘ื›ืœ ืžืงืจื” ืฉื”ื•ื ืœื $k=n$ ื ืงื‘ืœ $0$ ื•ืจืง ื‘ืžืงืจื” ืฉื”ื ืฉื•ื•ื™ื ื ืงื‘ืœ $0^0$ ืฉื–ื” 1) ื›ืœื•ืžืจ ืกื“ืจืช ื”ืžืงื“ืžื™ื $a_{0},a_{1},a_{2},\dots ,a_{d}$ ื”ื™ื ื‘ืขืฆื ื”ืกื“ืจื” $\frac{1}{0!}p(0), \frac{1}{1!}p^{\prime}(0)\dots, \frac{1}{d!}p^{(d)}(0)$ __ืœืžื”__ ืื $p$ ื”ื•ื ืคื•ืœื™ื ื•ื ืื– ื”ืคื•ื ืงืฆื™ื™ื” ื”ืงื“ื•ืžื” ืฉืœื• ื‘ืžืžืฉื™ื™ื ื”ื™ื ืคื•ืœื™ื ื•ื. __ืžืกืงื ื”__ ื ื ื™ื— ืฉ $f$ ื”ื™ื ืคื•ื ืงืฆื™ื™ื” ื’ื–ื™ืจื” $d$ ืคืขืžื™ื ื•ืฉ $f^{(d+1)} =0$ ืื– $f$ ื”ื™ื ืคื•ืœื™ื ื•ื ื•ื”ื™ื ื ืชื•ื ื” ืขืœ ื™ื“ื™ ื”ื ื•ืกื—ื” $$f(x)=\sum\limits_{k=0}^{d}\frac{f^{(k)}(0)}{k!}x^{k}

ื”ื•ื›ื—ื” ื”ืคื•ื ืงืฆื™ื™ื” f(d+1) ื”ื•ื ืคื•ืœื™ื ื•ื ื” 0

ืคื•ืœื™ื ื•ืžื™ ืžืงืœื•ืจืŸ

ืชื”ื™ f ืคื•ื ืงืฆื™ื” ื”ื’ื–ื™ืจื” n ืคืขืžื™ื ื‘ 0 . ืคื•ืœื™ื ื•ื ืžืงืœื•ืจืŸ ืžืกื“ืจ n ืฉืœ f ื”ื•ื ื”ืคื•ืœื™ื ื•ื Pn ื”ื‘ื

Pn(x)=โˆ‘k=0nf(k)(0)k!xk

ื“ื•ื’ืžื”:
ืขื‘ื•ืจ f(x)=ex ื ืงื‘ืœ ืฉืœื›ืœ n : fn(x)=ex ื•ื‘ื”ืฆื‘ืช 0 ื ืงื‘ืœ 1. ืœื›ืŸ ืคื•ืœื™ื ื•ื ืžืงืœื•ืจืŸ ืžืกื“ืจ n ื™ื”ื™ื”

Pn(x)=1+x+x22!+โ‹ฏ+xnn!=โˆ‘k=0nxkk!

ื”ืžืกืงื ื” ื”ื™ื ืฉื ื™ืชืŸ ืœืงืจื‘ ืคื•ื ืงืฆื™ื•ืช ืฉื’ื–ื™ืจื•ืช n ืคืขืžื™ื ืœืคื•ืœื™ื ื•ื ืžื”ืกื•ื’ ื”ื–ื” ื›ื™ื•ื•ืŸ ืฉื”ืจืื ื•.

ื˜ื•ืจื™ ื˜ื™ื™ืœื•ืจ ื•ืžืงืœื•ืจืŸ

ื˜ื•ืจ ื˜ื™ื™ืœื•ืจ ื”ื•ื ื˜ื•ืจ ื—ื–ืงื•ืช ืฉื”ืกืกืดื— ืฉืœื• ื”ื ืคื•ืœื™ื ื•ืžื™ ื˜ื™ื™ืœื•ืจ Pn ืฉืœ ื”ืคื•ื ืงืฆื™ื™ื”. (ืกื‘ื™ื‘ 0 ื–ื” ื ืงืจื ื˜ื•ืจื™ ืžืงืœื•ืจืŸ).

ื ืฉืืœืช ื”ืฉืืœื”, ืžืชื™ ืคื•ื ืงืฆื™ื™ื” ืžืกื•ื™ื™ืžืช ืฉื•ื•ื” ืœื˜ื•ืจ ื˜ื™ื™ืœื•ืจ/ืคื•ืœื™ื ื•ื ื˜ื™ื™ืœื•ืจ ืฉืœื” ื‘ืงื˜ืข ืžืกื•ื™ื™ื?
ื”ืชืฉื•ื‘ื” ืœืฉืืœื” ื”ื–ืืช ืžืชื—ืœืงืช ืœืฉื ื™ื™ื

โˆ€nโˆˆN,xโˆˆI|f(n)(x)|โ‰คM

ื˜ื•ืจื™ ื˜ื™ื™ืœื•ืจ ื™ื“ื•ืขื™ื

ืคืขื•ืœื•ืช ืฉืืคืฉืจ ืœืขืฉื•ืช ืขืœ ื˜ื•ืจื™ื ื™ื“ื•ืขื™ื

ืฉื™ืžื•ืฉ ื‘ื˜ื•ืจื™ื ื™ื“ื•ืขื™ื ื•ื”ืคืขื•ืœื•ืช ื”ื ืดืœ ืžืืคืฉืจ ืœื ื• ืœื”ื’ื™ืข ืœืฉื™ื•ื•ื™ื•ื ื•ืช ื‘ื™ืŸ ืคื•ื ืงืฆื™ื•ืช ืื—ืจื•ืช ืœื˜ื•ืจื™ื ืื—ืจื™ื ื‘ืœื™ ื”ืฆื•ืจืš ืœื”ื•ื›ื™ื— ืืช ื”ื›ืœ.

ื”ืขืจื›ืช ื”ืฉืืจื™ืช ืฉืœ ื˜ื•ืจ ื˜ื™ื™ืœื•ืจ

f(x)=โˆ‘n=0โˆžf(n)(a)n!(xโˆ’a)n=โˆ‘n=0Nf(n)(a)n!(xโˆ’a)n+โˆ‘n=N+1โˆžf(n)(a)n!(xโˆ’a)n

ื ืจืฆื” ืœื‘ื—ื•ืจ N ืฉื™ืืคืฉืจ ืœื ื• ืœืงื‘ืœ ื”ืขืจื›ื” ืขื“ ื“ื™ื•ืง ืžืกื•ื™ื™ื ืฉืœ ื˜ื•ืจ ื˜ื™ื™ืœื•ืจ ื‘ืืžืฆืขื•ืช PN ื›ืœื•ืžืจ ืคื•ืœื™ื ื•ื ื˜ื™ื™ืœื•ืจ ืžืกื“ืจ N.

ืกื™ืžื•ืŸ ืฉืืจื™ืช ื˜ื™ื™ืœื•ืจ ื”ื™ื ื‘ืขืฆื โˆ‘n=N+1โˆžf(n)(a)n!(xโˆ’a)n ื•ื”ื™ื ืžืกื•ืžื ืช ื› Rn ื•ื”ื™ื ืžื•ื’ื“ืจืช ืœื”ื™ื•ืช

R_{n}=f-P_{n}$$ ื›ืœื•ืžืจ ื”ืคื•ื ืงืฆื™ื™ื” ืคื—ื•ืช ื”ืคื•ืœื™ื ื•ื ืžื”ืกื“ืจ ืฉื‘ื—ืจื ื•.. ื›ืžื• ื›ืŸ ื”ืžื˜ืจื” ืฉืœื ื• ื”ื™ื ืฉื”ืฉืืจื™ืช ืชื”ื™ื” ื›ืžื” ืฉื™ื•ืชืจ ืงืจื•ื‘ื” ืœ 0 ื‘ืขืจื›ื” ื”ืžื•ื—ืœื˜ , ื ืกืžืŸ $|R_{n}|$ _ื›ืฉื’ื™ืื”_ . ื›ื›ืœ ืฉื”ืฉื’ื™ืื” ื™ื•ืชืจ ืงืจื•ื‘ื” ืœ $0$ ื›ื›ื” ื”ืคื•ืœื™ื ื•ื ื˜ื™ื™ืœื•ืจ ื™ื•ืชืจ ืงืจื•ื‘ ื‘ืขืจื›ื• ืœื˜ื•ืจ. __ื™ืฉ ื”ืจื‘ื” ืชืื•ืจื™ื™ื” ืžืกื‘ื™ื‘ ืœื ื•ืฉื ื”ื–ื”, ื›ืžื•ื‘ืŸ ืฉื›ื™ื•ื•ืŸ ืฉืœื ื”ืชืžืงื“ื ื• ื‘ื” ืœืื•ืจืš ื”ืงื•ืจืก ืœื ืืคืจื˜ ืื•ืชื” ื‘ืกื™ื›ื•ื ื–ื”__ . __ืžืฉืคื˜ ืฉืืจื™ืช ืœื’ืจื ืื–ืณ__ ืชื”ื™ $f$ ืžื•ื’ื“ืจืช ื‘ืงื˜ืข $I$ ื•ื’ื–ื™ืจื” ื‘ื• $n+1$ ืคืขืžื™ื ืกื‘ื™ื‘ $x_{0}$. ืœื›ืœ $x$ ืฉื ื‘ื—ืจ ื‘ืงื˜ืข ื ื•ื›ืœ ืœื‘ื ื•ืช ืกื‘ื™ื‘ื• ืคื•ืœื™ื ื•ื ื•ื˜ื•ืจ ื˜ื™ื™ืœื•ืจ ื›ืš ืฉ $$\exists_{c\in (x,x_{0})}:R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_{0})^{n+1}

ื ื•ื›ืœ ืœื”ืขื–ืจ ื‘ืžืฉืคื˜ ื–ื” ื›ื“ื™ ืœื—ืกื•ื ืืช ื”ืฉืืจื™ืช ื‘ ืขืจืš ืžื•ื—ืœื˜ ื‘ื”ื ืชืŸ x,x0 ืฉื ื‘ื—ืจ.

ื“ื•ื’ืžื”
ื ื—ืฉื‘ ืืช sin(0.1) ื‘ืฉื’ื™ืื” ืฉืœื ืชืขืœื” ืขืœ 0.001
ื ื’ื“ื™ืจ $$f(x)=\sin(x)$$ ื• ื ืกืžืŸ ืืช x=0.1
ื›ืขืช ื ืจืฆื” ืœื‘ื—ื•ืจ ืืช ื ืงื•ื“ืช ื”ืžืจื›ื– ืฉืœ ื”ื˜ื•ืจ, ื”ืจื‘ื” ืคืขืžื™ื ื ืจืฆื” ืœื‘ื—ื•ืจ ื ืงื•ื“ื” ืฉืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉืงื™ื™ื ื˜ื•ืจ ื˜ื™ื™ืœื•ืจ ืกื‘ื™ื‘ื”, ืื• ื ืงื•ื“ื” ืฉืงืจื•ื‘ื” ืœx ืฉื‘ื—ืจื ื•. ื‘ืžืงืจื” ื”ื–ื” ื ื•ื— ื™ื”ื™ื” ืœืงื—ืช ืืช 0 .

ื˜ื•ืจ ื˜ื™ื™ืœื•ืจ ืฉืœ ืกื™ื ื•ืก ืกื‘ื™ื‘ 0 ื™ื™ืจืื” ืžื”ืฆื•ืจื”

sinโก(x)=xโˆ’x33!+x55!โˆ’โ€ฆ

ื›ืขืช,

|Rn(x)|=|fn+1(c)(n+1)!xn+1|โ‰ค(0.1)n+1(n+1)!

ื”ื—ืกื™ืžื” ื”ื–ืืช ื ื•ื‘ืขืช ืžื›ืš ืฉืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉื”ื ื’ื–ืจืช ืฉืœ ืคื•ื ืงืฆื™ื™ืช ื”sin ืชืžื™ื“ ื—ืกื•ืžื” ื‘1 ืœื›ืœ n .

ื›ืขืช ื ืฉืืจ ืจืง ืœื”ืฆื™ื‘ n=2 ืฉืขื‘ื•ืจื• ื”ื—ืกื ืฉืœื ื• ื™ื”ื™ื” ื”ื›ื™ ืงืจื•ื‘ ืžืœืžื˜ื” ืœืฉื’ื™ืื” ื”ืจืฆื•ื™ื” .

ื›ืขืช ื ืฉืืจ ืœื—ืฉื‘ ืืช ืคื•ืœื™ื ื•ื ื˜ื™ื™ืœื•ืจ ืžื“ืจื’ื” 2 ื•ื ืงื‘ืœ ืืช ืดืขืจืšืด ื”ืคื•ื ืงืฆื™ื™ื” ื‘ืฉื’ื™ืื” ื”ืจืฆื•ื™ื”.

ื”ืขืจื›ืช ื”ืฉื’ื™ืื” ืขืœ ื˜ื•ืจ ืœื™ื™ื‘ื ื™ืฅ

ื‘ื˜ื•ืจ ืœื™ื™ื‘ื ื™ืฅ ื™ื•ืชืจ ืงืœ ืœื ื• ืœืขืžื•ื“ ืืช ื”ืฉื’ื™ืื” ื›ื™ ืžืชืงื™ื™ื ืชืžื™ื“

|R_{n}|\leq |a_{n+1}|$$ ื‘ื ื™ื’ื•ื“ ืœืžืงืจื” ื”ืงื•ื“ื ืฉืœ ื˜ื•ืจื™ื ื›ืœืœื™ื ืฉื”ื™ื™ื ื• ืฆืจื™ื›ื™ื ืœื‘ื˜ื ืืช ื”ืฉืืจื™ืช ื‘ืืžืฆืขื•ืช ืžืฉืคื˜ ืœื’ืจื ืื– ื›ื“ื™ ืœื—ืกื•ื ืื•ืชื•, ื›ืืŸ ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื—ืกื•ื ืื•ืชื• ื™ืฉื™ืจื•ืช. __ื ืฉื™ื ืœื‘__, ื™ื›ื•ืœื™ื ืœืฉืื•ืœ ื’ื ืืช ื”ืฉืืœื” ื”ื”ืคื•ื›ื”, ื‘ื”ื™ื ืชืŸ $N$ ืžืกื•ื™ื™ื ืœื”ืขืจื™ืš ืืช ื”ืฉื’ื™ืื” ืฉืœ ืคื•ืœื™ื ื•ื ื˜ื™ื™ืœื•ืจ ื‘ื™ื—ืก ืœ ืคื•ื ืงืฆื™ื™ื” ืขืฆืžื”.. ื–ืืช ืฉืืœื” ื™ื•ืชืจ ืคืฉื•ื˜ื” ืœื˜ืขืžื™ ืฉื›ืŸ, ื”ื™ื ืžืืคืฉืจืช ื—ื™ืฉื•ื‘ ื™ืฉื™ืจ.